3.28 \(\int \frac {a-b x^3}{\sqrt [3]{a+b x^3}} \, dx\)

Optimal. Leaf size=91 \[ -\frac {1}{3} x \left (a+b x^3\right )^{2/3}-\frac {2 a \log \left (\sqrt [3]{a+b x^3}-\sqrt [3]{b} x\right )}{3 \sqrt [3]{b}}+\frac {4 a \tan ^{-1}\left (\frac {\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a+b x^3}}+1}{\sqrt {3}}\right )}{3 \sqrt {3} \sqrt [3]{b}} \]

[Out]

-1/3*x*(b*x^3+a)^(2/3)-2/3*a*ln(-b^(1/3)*x+(b*x^3+a)^(1/3))/b^(1/3)+4/9*a*arctan(1/3*(1+2*b^(1/3)*x/(b*x^3+a)^
(1/3))*3^(1/2))/b^(1/3)*3^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 91, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {388, 239} \[ -\frac {1}{3} x \left (a+b x^3\right )^{2/3}-\frac {2 a \log \left (\sqrt [3]{a+b x^3}-\sqrt [3]{b} x\right )}{3 \sqrt [3]{b}}+\frac {4 a \tan ^{-1}\left (\frac {\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a+b x^3}}+1}{\sqrt {3}}\right )}{3 \sqrt {3} \sqrt [3]{b}} \]

Antiderivative was successfully verified.

[In]

Int[(a - b*x^3)/(a + b*x^3)^(1/3),x]

[Out]

-(x*(a + b*x^3)^(2/3))/3 + (4*a*ArcTan[(1 + (2*b^(1/3)*x)/(a + b*x^3)^(1/3))/Sqrt[3]])/(3*Sqrt[3]*b^(1/3)) - (
2*a*Log[-(b^(1/3)*x) + (a + b*x^3)^(1/3)])/(3*b^(1/3))

Rule 239

Int[((a_) + (b_.)*(x_)^3)^(-1/3), x_Symbol] :> Simp[ArcTan[(1 + (2*Rt[b, 3]*x)/(a + b*x^3)^(1/3))/Sqrt[3]]/(Sq
rt[3]*Rt[b, 3]), x] - Simp[Log[(a + b*x^3)^(1/3) - Rt[b, 3]*x]/(2*Rt[b, 3]), x] /; FreeQ[{a, b}, x]

Rule 388

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(d*x*(a + b*x^n)^(p + 1))/(b*(n*
(p + 1) + 1)), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(b*(n*(p + 1) + 1)), Int[(a + b*x^n)^p, x], x] /; FreeQ[{
a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]

Rubi steps

\begin {align*} \int \frac {a-b x^3}{\sqrt [3]{a+b x^3}} \, dx &=-\frac {1}{3} x \left (a+b x^3\right )^{2/3}+\frac {1}{3} (4 a) \int \frac {1}{\sqrt [3]{a+b x^3}} \, dx\\ &=-\frac {1}{3} x \left (a+b x^3\right )^{2/3}+\frac {4 a \tan ^{-1}\left (\frac {1+\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a+b x^3}}}{\sqrt {3}}\right )}{3 \sqrt {3} \sqrt [3]{b}}-\frac {2 a \log \left (-\sqrt [3]{b} x+\sqrt [3]{a+b x^3}\right )}{3 \sqrt [3]{b}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 134, normalized size = 1.47 \[ \frac {2 a \log \left (\frac {b^{2/3} x^2}{\left (a+b x^3\right )^{2/3}}+\frac {\sqrt [3]{b} x}{\sqrt [3]{a+b x^3}}+1\right )-3 \sqrt [3]{b} x \left (a+b x^3\right )^{2/3}-4 a \log \left (1-\frac {\sqrt [3]{b} x}{\sqrt [3]{a+b x^3}}\right )+4 \sqrt {3} a \tan ^{-1}\left (\frac {\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a+b x^3}}+1}{\sqrt {3}}\right )}{9 \sqrt [3]{b}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a - b*x^3)/(a + b*x^3)^(1/3),x]

[Out]

(-3*b^(1/3)*x*(a + b*x^3)^(2/3) + 4*Sqrt[3]*a*ArcTan[(1 + (2*b^(1/3)*x)/(a + b*x^3)^(1/3))/Sqrt[3]] - 4*a*Log[
1 - (b^(1/3)*x)/(a + b*x^3)^(1/3)] + 2*a*Log[1 + (b^(2/3)*x^2)/(a + b*x^3)^(2/3) + (b^(1/3)*x)/(a + b*x^3)^(1/
3)])/(9*b^(1/3))

________________________________________________________________________________________

fricas [B]  time = 0.44, size = 363, normalized size = 3.99 \[ \left [\frac {6 \, \sqrt {\frac {1}{3}} a b \sqrt {\frac {\left (-b\right )^{\frac {1}{3}}}{b}} \log \left (3 \, b x^{3} - 3 \, {\left (b x^{3} + a\right )}^{\frac {1}{3}} \left (-b\right )^{\frac {2}{3}} x^{2} - 3 \, \sqrt {\frac {1}{3}} {\left (\left (-b\right )^{\frac {1}{3}} b x^{3} - {\left (b x^{3} + a\right )}^{\frac {1}{3}} b x^{2} + 2 \, {\left (b x^{3} + a\right )}^{\frac {2}{3}} \left (-b\right )^{\frac {2}{3}} x\right )} \sqrt {\frac {\left (-b\right )^{\frac {1}{3}}}{b}} + 2 \, a\right ) - 3 \, {\left (b x^{3} + a\right )}^{\frac {2}{3}} b x - 4 \, a \left (-b\right )^{\frac {2}{3}} \log \left (\frac {\left (-b\right )^{\frac {1}{3}} x + {\left (b x^{3} + a\right )}^{\frac {1}{3}}}{x}\right ) + 2 \, a \left (-b\right )^{\frac {2}{3}} \log \left (\frac {\left (-b\right )^{\frac {2}{3}} x^{2} - {\left (b x^{3} + a\right )}^{\frac {1}{3}} \left (-b\right )^{\frac {1}{3}} x + {\left (b x^{3} + a\right )}^{\frac {2}{3}}}{x^{2}}\right )}{9 \, b}, -\frac {12 \, \sqrt {\frac {1}{3}} a b \sqrt {-\frac {\left (-b\right )^{\frac {1}{3}}}{b}} \arctan \left (-\frac {\sqrt {\frac {1}{3}} {\left (\left (-b\right )^{\frac {1}{3}} x - 2 \, {\left (b x^{3} + a\right )}^{\frac {1}{3}}\right )} \sqrt {-\frac {\left (-b\right )^{\frac {1}{3}}}{b}}}{x}\right ) + 3 \, {\left (b x^{3} + a\right )}^{\frac {2}{3}} b x + 4 \, a \left (-b\right )^{\frac {2}{3}} \log \left (\frac {\left (-b\right )^{\frac {1}{3}} x + {\left (b x^{3} + a\right )}^{\frac {1}{3}}}{x}\right ) - 2 \, a \left (-b\right )^{\frac {2}{3}} \log \left (\frac {\left (-b\right )^{\frac {2}{3}} x^{2} - {\left (b x^{3} + a\right )}^{\frac {1}{3}} \left (-b\right )^{\frac {1}{3}} x + {\left (b x^{3} + a\right )}^{\frac {2}{3}}}{x^{2}}\right )}{9 \, b}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*x^3+a)/(b*x^3+a)^(1/3),x, algorithm="fricas")

[Out]

[1/9*(6*sqrt(1/3)*a*b*sqrt((-b)^(1/3)/b)*log(3*b*x^3 - 3*(b*x^3 + a)^(1/3)*(-b)^(2/3)*x^2 - 3*sqrt(1/3)*((-b)^
(1/3)*b*x^3 - (b*x^3 + a)^(1/3)*b*x^2 + 2*(b*x^3 + a)^(2/3)*(-b)^(2/3)*x)*sqrt((-b)^(1/3)/b) + 2*a) - 3*(b*x^3
 + a)^(2/3)*b*x - 4*a*(-b)^(2/3)*log(((-b)^(1/3)*x + (b*x^3 + a)^(1/3))/x) + 2*a*(-b)^(2/3)*log(((-b)^(2/3)*x^
2 - (b*x^3 + a)^(1/3)*(-b)^(1/3)*x + (b*x^3 + a)^(2/3))/x^2))/b, -1/9*(12*sqrt(1/3)*a*b*sqrt(-(-b)^(1/3)/b)*ar
ctan(-sqrt(1/3)*((-b)^(1/3)*x - 2*(b*x^3 + a)^(1/3))*sqrt(-(-b)^(1/3)/b)/x) + 3*(b*x^3 + a)^(2/3)*b*x + 4*a*(-
b)^(2/3)*log(((-b)^(1/3)*x + (b*x^3 + a)^(1/3))/x) - 2*a*(-b)^(2/3)*log(((-b)^(2/3)*x^2 - (b*x^3 + a)^(1/3)*(-
b)^(1/3)*x + (b*x^3 + a)^(2/3))/x^2))/b]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int -\frac {b x^{3} - a}{{\left (b x^{3} + a\right )}^{\frac {1}{3}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*x^3+a)/(b*x^3+a)^(1/3),x, algorithm="giac")

[Out]

integrate(-(b*x^3 - a)/(b*x^3 + a)^(1/3), x)

________________________________________________________________________________________

maple [F]  time = 0.37, size = 0, normalized size = 0.00 \[ \int \frac {-b \,x^{3}+a}{\left (b \,x^{3}+a \right )^{\frac {1}{3}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-b*x^3+a)/(b*x^3+a)^(1/3),x)

[Out]

int((-b*x^3+a)/(b*x^3+a)^(1/3),x)

________________________________________________________________________________________

maxima [B]  time = 1.22, size = 244, normalized size = 2.68 \[ -\frac {1}{6} \, {\left (\frac {2 \, \sqrt {3} \arctan \left (\frac {\sqrt {3} {\left (b^{\frac {1}{3}} + \frac {2 \, {\left (b x^{3} + a\right )}^{\frac {1}{3}}}{x}\right )}}{3 \, b^{\frac {1}{3}}}\right )}{b^{\frac {1}{3}}} - \frac {\log \left (b^{\frac {2}{3}} + \frac {{\left (b x^{3} + a\right )}^{\frac {1}{3}} b^{\frac {1}{3}}}{x} + \frac {{\left (b x^{3} + a\right )}^{\frac {2}{3}}}{x^{2}}\right )}{b^{\frac {1}{3}}} + \frac {2 \, \log \left (-b^{\frac {1}{3}} + \frac {{\left (b x^{3} + a\right )}^{\frac {1}{3}}}{x}\right )}{b^{\frac {1}{3}}}\right )} a - \frac {1}{18} \, {\left (\frac {2 \, \sqrt {3} a \arctan \left (\frac {\sqrt {3} {\left (b^{\frac {1}{3}} + \frac {2 \, {\left (b x^{3} + a\right )}^{\frac {1}{3}}}{x}\right )}}{3 \, b^{\frac {1}{3}}}\right )}{b^{\frac {4}{3}}} - \frac {a \log \left (b^{\frac {2}{3}} + \frac {{\left (b x^{3} + a\right )}^{\frac {1}{3}} b^{\frac {1}{3}}}{x} + \frac {{\left (b x^{3} + a\right )}^{\frac {2}{3}}}{x^{2}}\right )}{b^{\frac {4}{3}}} + \frac {2 \, a \log \left (-b^{\frac {1}{3}} + \frac {{\left (b x^{3} + a\right )}^{\frac {1}{3}}}{x}\right )}{b^{\frac {4}{3}}} - \frac {6 \, {\left (b x^{3} + a\right )}^{\frac {2}{3}} a}{{\left (b^{2} - \frac {{\left (b x^{3} + a\right )} b}{x^{3}}\right )} x^{2}}\right )} b \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*x^3+a)/(b*x^3+a)^(1/3),x, algorithm="maxima")

[Out]

-1/6*(2*sqrt(3)*arctan(1/3*sqrt(3)*(b^(1/3) + 2*(b*x^3 + a)^(1/3)/x)/b^(1/3))/b^(1/3) - log(b^(2/3) + (b*x^3 +
 a)^(1/3)*b^(1/3)/x + (b*x^3 + a)^(2/3)/x^2)/b^(1/3) + 2*log(-b^(1/3) + (b*x^3 + a)^(1/3)/x)/b^(1/3))*a - 1/18
*(2*sqrt(3)*a*arctan(1/3*sqrt(3)*(b^(1/3) + 2*(b*x^3 + a)^(1/3)/x)/b^(1/3))/b^(4/3) - a*log(b^(2/3) + (b*x^3 +
 a)^(1/3)*b^(1/3)/x + (b*x^3 + a)^(2/3)/x^2)/b^(4/3) + 2*a*log(-b^(1/3) + (b*x^3 + a)^(1/3)/x)/b^(4/3) - 6*(b*
x^3 + a)^(2/3)*a/((b^2 - (b*x^3 + a)*b/x^3)*x^2))*b

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {a-b\,x^3}{{\left (b\,x^3+a\right )}^{1/3}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a - b*x^3)/(a + b*x^3)^(1/3),x)

[Out]

int((a - b*x^3)/(a + b*x^3)^(1/3), x)

________________________________________________________________________________________

sympy [C]  time = 5.53, size = 76, normalized size = 0.84 \[ \frac {a^{\frac {2}{3}} x \Gamma \left (\frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {1}{3} \\ \frac {4}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 \Gamma \left (\frac {4}{3}\right )} - \frac {b x^{4} \Gamma \left (\frac {4}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {4}{3} \\ \frac {7}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 \sqrt [3]{a} \Gamma \left (\frac {7}{3}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*x**3+a)/(b*x**3+a)**(1/3),x)

[Out]

a**(2/3)*x*gamma(1/3)*hyper((1/3, 1/3), (4/3,), b*x**3*exp_polar(I*pi)/a)/(3*gamma(4/3)) - b*x**4*gamma(4/3)*h
yper((1/3, 4/3), (7/3,), b*x**3*exp_polar(I*pi)/a)/(3*a**(1/3)*gamma(7/3))

________________________________________________________________________________________